Quality Improvement using Data Mining in Manufacturing Processes
نویسندگان
چکیده
Nowadays, manufacturing enterprises have to stay competitive in order to survive the competition in the global market. Quality, cost and cycle time are considered as decisive factors when a manufacturing enterprise competes against its peers. Among them, quality is viewed as the more critical for getting long-term competitive advantages. The development of information technology and sensor technology has enabled large-scale data collection when monitoring the manufacturing processes. Those data could be potentially useful when learning patterns and knowledge for the purpose of quality improvement in manufacturing processes. However, due to the large amount of data, it can be difficult to discover the knowledge hidden in the data without proper tools. Data mining provides a set of techniques to study patterns in data “that can be sought automatically, identified, validated, and used for prediction” (Witten and Frank 2005). Typical data mining techniques include clustering, association rule mining, classification, and regression. In recent years data mining began to be applied to quality diagnosis and quality improvement in complicated manufacturing processes, such as semiconductor manufacturing and steel making. It has become an emerging topic in the field of quality engineering. Andrew Kusiak (2001) used a decision tree algorithm to identify the cause of soldering defects on circuit board. The rules derived from the decision tree greatly simplified the process of quality diagnosis. Shao-Chuang Hsu (2007) and Chen-Fu Chien (2006 and 2007) demonstrated the use of data mining on semiconductor yield improvement. Data mining has also been applied to product development process (Bakesh Menon, 2004) and assembly lines (Sébastien Gebus,2007). Some researchers combined data mining and traditional statistical methods and applied to quality improvement. Examples are the use of MSPC (multivariate statistical control charts) and neural networks in detergent-making company (Seyed Taghi Akhavan Niaki, 2005; Tai-Yue Wang, 2002), the combination of automated decision system and six sigma in the General Electric financial Assurance businesses (Angie Patterson, 2005), the combined used of decision tree and SPC with data from Holmes and Mergen (Ruey-Shiang Guh, 2008), the use of SVR (support vector regression) and control charts (Ben Khediri ISSam, 2008), the use of ANN (artificial neural O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg
منابع مشابه
Data Mining for Improving the Quality of Manufacturing: A Feature Set Decomposition Approach
Data mining tools can be very beneficial for discovering interesting and useful patterns in complicated manufacturing processes. These patterns can be used, for example, to improve manufacturing quality. However, data accumulated in manufacturing plants have unique characteristics, such as unbalanced distribution of the target attribute, and a small training set relative to the number of input ...
متن کاملData Mining in Manufacturing: A Review
The paper reviews applications of data mining in manufacturing engineering, in particular production processes, operations, fault detection, maintenance, decision support, and product quality improvement. Customer relationship management, information integration aspects, and standardization are also briefly discussed. This review is focused on demonstrating the relevancy of data mining to manuf...
متن کاملA data mining approach to study the significance of nonlinearity in multistation assembly processes
Linear models of multistation manufacturing processes are commonly used for variation reduction and other quality improvement purposes. Yet the nonlinear nature of variation propagation in multistation manufacturing processes makes people inevitably wonder at what point does the linear model cease to provide a reasonable approximation of the nonlinear system. This paper presents a data mining m...
متن کاملData Mining to Recognize Fail Parts in Manufacturing Process
In many manufacturing processes, some key process parameters have very strong relationship with the normal or various faulty products of finished products. The abnormal changes of these process parameters could result in various categories of faulty products. In this paper, a data mining model is developed for on-line intelligent monitoring and diagnosis of the manufacturing processes. In the p...
متن کاملMining Manufacturing Databases to Discover the Effect of Operation Sequence and Operation Setting on the Product Quality
Data mining techniques can be used for discovering interesting patterns in complicated manufacturing processes. These patterns are used to improve manufacturing quality. Classical representations of quality data mining problems usually refer to the operations settings and not to their sequence. This paper examines the effect of the operation sequence on the quality of the product using data min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012